# Portfolio



Personal Homepage: 🕒 http://lutaoyan.github.io 🔗





Bachelor 😥 Data Science and Big Data Technology

## **Keywords:**

- Dataset
- MLLM (Multimodal Large Language Model)
- Data and Visual Analysis
- Computer Vision
- Artificial Intelligence
- Prompt and Fine-tuning on LLM





 $01 - \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ 

## **Chart-Insight: A Large-Scale Dataset for Visual Analytics**

**Pipeline for Dataset Construction** 

## **Contribution & Honor**

- Collaborated with HKUST II & RUC (??)
- A Recommendation Letter S From Prof. LUO
- First Dataset focus on Low-Level Visual Task .
- Available Metadata(eg. tables,pics,QA pairs)
- Abundant Visual and Textual Variants
- Support Investigating Performance of MLLMs

## **Overview of Chart-Insights**



## Highlight

- 5 key steps to construct Chart-Insight
- 2K high-quality charts
- Extensive and measurable difficulties
- Innovative 4 forms of textual prompt design
- Compared with Existing Datasets, available metadata facilitate future research
- Average 44.5 questions / chart, deep excavation of chart



#### Highlight

- 10 basic analytic tasks across 7 widely-used chart types
- Distribution on vast fine-graine task vs. chart, eg. Bar, Line, Scatter, Pie
- 10 low-level tasks into 3 categories, eg. Analysis, Search, and Query
- 89,388 quartets (chart, task, question, answer)
- In-depth evaluation on impact of basic chart element



# **Chain-of-Charts: A Novel Method to Improve Performance of MLLM**

### **Contribution & Honor**

- Summited to IEEE VIS (Flagship Conference)
- Co-first Author of Paper S
- Improve MLLM Performance by 24% in the field of Visual Analysis
- Transferable like Chain-of-Thought
- Can be combined with Visual Prompts

## **Evaluation Framework**





Chain-of-Charts vs. Other Prompt Method

## Highlight

- Chain-of-charts demonstrates its
  effectiveness and Interpretability
- Better than other common methods of enhancement (eg. Tutorial, Role-Play)
- Progressively guide the model towards a deeper understanding of charts
- Significantly improved GPT-4V's capabilities across 10 different tasks
- Developing visual prompts specifically is a promising research direction

### Highlight

- A reasonable framework (T,Q,C)to evaluate MLLM
- With the bonus of Visual Prompt & Chain-of-Charts, the accuracy rate is increased from 56.13% to 83.83%!

Task-based Effectiveness of GPT-4V

• Shed light on the capabilities and limitations of MLLM

03 — • • • • • •

Offer valuable insights for future research



# **3D Lipstick Effect: A Tool to Make Face Fancy**

## Feature & Honor

- Top 3% Course Design (3D Vision and AI) •
- Based on Google MediaPipe AI Framework •
- **Core Algorithm: Face Mesh** •
- Extract Key Points to Make Effect on Face •

## **Principle & Demo**

#### Background

In the current context of rapidly evolving artificial intelligence (AI) and computer vision technologies, my project - 3D lipstick effects based on MediaPipe - is an innovative practice in this trend. Combining the high-precision facial tracking technology with 3D graphics rendering, this technology has a wide range of practical applications, especially in the e-commerce and social media.



- More open sourced improved applications
- Complete Design Report











Age prediction

• Puppeteering

• Gesture recognition

• Posture detection

## **Traffic-sign Detection and Recognition**

## Feature & Honor

## **Overview of Project**

- School of Computing Programme in
- Distinction (Top) Assessment S Certificate
- Traffic Sign dataset-based Deep learning
- Analysis Below 3% Error Rates

#### Highlight

 Sort large-scale dataset into 31,367 training images, 7,842 validation images, and 12,630 testing images

| Basic Statistics<br>• Numpy | 2 | Table Visualization<br>• Pandas | 2 | Histogram<br>• Matplotlib |
|-----------------------------|---|---------------------------------|---|---------------------------|
|                             |   |                                 |   |                           |

• 4 Images Pre-processing Combination Method, Effectively Improve Image Quality



• Feature extraction algorithm (Especially HOG) to filter out the misdetected non-traffic sign areas Precise Positioning Step by Step





Multi-Evaluation to Find Best Model Combination

| Model                     | Accuracy     | Precision    | Recall       | F1 Score     |
|---------------------------|--------------|--------------|--------------|--------------|
| HoG + KNN                 | 0.939        | 0.912        | 0.907        | 0.909        |
| Hessian + KNN             | 0.932        | 0.933        | 0.926        | 0.929        |
| HoG + Random Forest       | <u>0.991</u> | <u>0.996</u> | <u>0.983</u> | <u>0.989</u> |
| Hessian + random forest   | 0.977        | 0.989        | 0.961        | 0.975        |
| LBP + SVM (linear kernel) | 0.928        | 0.969        | 0.901        | 0.934        |
| HoG + SVM (poly kernel)   | 0.986        | 0.991        | 0.981        | 0.986        |

## Gallery

#### **Defense Scene**

